Application of Multiple-Criteria Decision Analysis to Open Distributed Processing Systems Management

Romain Lenglet
Tokyo Institute of Technology
lenglet@csg.is.titech.ac.jp

Conformance of systems

- Conformance requirements: express what is expected from a system, in a specification.
- A system is conformant when conformance requirements are met by the system implementation.
- How to make a system conformant? Through design and systems management (need to combine both, to handle faults and runtime changes).

Design of systems

- Design: transformations of specifications, at different levels of abstraction, down to an implementation.
- Conformance assessment:
 1) check validity and consistency of specifications and transformations;
 2) test that requirements hold in implementation.
- Classical approach, standardized in ISO 12207, ISO RM-ODP, OMG MDA...

Systems management

- A management system (MS) makes a system conformant to requirements, at runtime.
- Standard general architecture (ISO ODMA):
- Autonomous system: a MS that has no human being in the loop.
- Related works on systems management: generally address only technological issues.
- Problem: how to design a MS to ensure that a managed system is conformant at runtime?
- Cannot be solved by classical design approaches:
 1) must consider the effects of management strategies on the managed system;
 2) requirements and strategies must be separately specified (not the case in most existing MS approaches).

Managing is deciding

- Systems management boils down to a decision problem:
 1) define a model of the state of the managed system;
 2) express the requirements in that model;
 3) identify a set of interesting management strategies;
 4) predict the effects of strategies on the managed system's state, and express the effects in the model;
 5) compare the effects to requirements, and choose and execute the strategy that best makes the system conformant.
- Secondary problem: which decision method to use? Many real-world decision methods exist and could be used.

Multiple-Criteria Decision Methods

- Classical methods: model = one criterion (e.g. "money"). Do not fit systems management because:
 1) uncertainty about effects of strategies, state of system...
 2) requirements must reflect multiple goals which cannot be simultaneously satisfied.
- Solution: use multiple criteria models and decision methods (MCDMs).
- Our proposal: a MS design method that is an application of MCDMs to autonomous systems management.

Example management system

- Managed system: two cache objects ("privileged" and "underprivileged")
- Model of state: two criteria: \(<C_1,C_2>\)
 C1: # entries in "privileged" cache
 C2: # entries in "underprivileged" cache
- Conformance requirements:
 preferred state: \(<10000,10000>\)
 constraints: \(C_1 \geq 8; C_2 \geq 0; C_1 \cdot C_2 \leq 15000\)
- Management strategies: (three)
 "do nothing"
 "remove entries from underprivileged" and "flush both caches"

Scenario 1:
 1) notify of 1000 new entries added
 2) ask strategists to predict effects of strategies for the current state (<5000,5000>)
 3) compare effects to requirements, and choose "remove from UPC" as the best strategy
 4) ask the strategist to execute the strategy, i.e. it removes entries from unprivileged cache

This work is supported by a JSPS Post-doctoral Fellowship, number P 56819.