1. Introduction

- Background
 - There are many multi-lingual texts in WWW
 - In automatic processing of multi-lingual texts,
 1. Segmentation by language.
 2. Identification of the language of each segment.
- Segmentation is useful:
 - Preprocessing of multi-lingual text analysis
 - Assembling corpora of non-major languages

2. Problem Formulation

- Assumptions
 - For all multilingual texts, every text portion is written in one of the given languages.
 - Amount of learning data is small (up to kilobytes)
 - Only a limited amount of corpus data is available.

- Notation
 - \(X = x_0 \cdots x_{|X|-1} \): i-th character of text \(X \).
 - \(X = [x_0, \cdots, x_{|X|-1}] \): List of text portions, concatenation of \(X_i \)'s equals to \(X \).
 - \(L = [l_0, \cdots, l_{|L|-1}] \): List of languages of corresponding portions.

- Formulation
 - Our formulation is based on the MDL: \(\{dL(X)\} \) description length of \(X \):
 \[
 (\hat{X}, \hat{L}) = \arg \min_{X,L} \sum_{i=0}^{|X|-1} \sum_{j=0}^{|L|-1} dL_i(x_i) \quad \text{with } |X| = |L|
 \]

3. Calculation of Cross-Entropy

Chose 2 each from two representative compression methods.

- Mean of Matching Statistics (MMS)
 - Dictionary-based method [Farach 94], [Juola 97]
 - A simplified method of Lempel-Ziv algorithm [Ziv&Lempel 77]
 - This method uses matching statistics \(\text{len}(Y) \)
 - Modification applied to decrease computational complexity

 \[
 MMS_Y(X) = E \left[\frac{\log|Y|}{\text{len}(Y)} \right]
 \]

- Prediction by Partial Matching (PPM)
 - Statistical method [Clealy&Witten 84], [Teahan 00]
 - A variation of n-gram model, using Witten-Bell smoothing
 \[
 \text{PPM}_Y(X) = \prod_{i=1}^{|X|} P_Y(x_i|x_{i-1} \cdots x_{i-n})
 \]

4. Segmentation by Dynamic Programming

- Recursive Formulation
 - We use DP to avoid exponential increase of computational complexity.
 - Our formula based on MDL can be decomposed recursively as follows:
 \[
 DP(X, L) = \min_{l \in \{0, \ldots, |L|-1\}} \{DP(x_0 \cdots x_{|X|-1}, L') + dL_i(x_1 \cdots x_{|X|-1}) \}
 \]

- Complexity Reduction
 - Straightforward implementation: \(O(|L|^2|X|^2) \)
 - The complexity decreases to: \(O(|L||X|) \)
 - Reduction Techniques:
 1. Caching
 2. Locality of context dependency
 3. Keep scores of 2 best languages

5. Experiment

- Using Datasets
 - Data (Training 4 / Test 1)
 - UDHR (Universal Declaration of Human Rights) 277
 - Wiki (Wikipedia) 222

- Experimental Setting (for Multi-lingual Text)
 - 5-fold cross-validation (Training Part 4 / Test Part 1)
 - All test data generated artificially from above data
 1. Choose number of segments \(K = 1 \sim 5 \)
 2. Choose K languages are randomly chosen
 3. For each language, take 40 to 160 chars from test part
 4. Shuffle and concatenate K portions.
 5. Each line is generated by varying the \(\gamma \)

- Results (P-R Plot & Max F-score)
 - Results for language detection
 - Very high F-score
 - Results for segmentation
 - When restricting boundaries to occur at any character border
 - When restricting boundaries to occur only at white spaces

Reference

This work was supported by MEXT JSPS KAKENHI Grant Number (2400005, 20240006)